目次

1. 概 要 -- 3
 1.1 概 要 -- 3
 1.2 回路ブロック -- 3

2. 仕 様 -- 4
 2.1 一般仕様 -- 4
 2.2 機能仕様 -- 5
 2.3 出力変換特性 -- 5

3. 各部名称・機能 -- 6
 3.1 概 観 -- 6
 3.2 ステータス表示器 -- 6
 3.3 外部出力端子台 -- 7
 3.4 メモリバス/IO バス切替えスイッチ -- 7

4. 配 線 -- 8
 4.1 端子割り付け -- 8
 4.2 接続例 -- 8

5. ソフトウェアI／F -- 9
 5.1 概 要 -- 9
 5.2 F 関数 -- 9
 5.3 F 関数使用例 -- 12
 5.4 I/O 割り付け -- 13

6. オフセット／ゲイン調整 -- 14
 6.1 概 要 -- 14
 6.2 調整手順 -- 14
1. 概要

1.1 概要
本取扱説明書はμGPCdsPシリーズの高速アナログ出力モジュールについて説明したものです。

SHPC-515はCPUモジュールよりデジタル信号を受け取り、アナログ信号を外部に出力します。D/A変換速度は0.05ms/6chと高速で、さらにCPUモジュールとのデータ転送にデュアルポートメモリを使用し高速化を図っています。
また、2チャンネルを1組とし、その組間で絶縁した回路構成となっております。

1.2 回路ブロック
SHPC-515の回路ブロック図を図1-1に示します。
2つのチャンネルごとに絶縁された出力となっています。
図中に波線でチャンネル間絶縁を表記しました。
2. 仕様

2.1 一般仕様

SHPC-515の一般仕様を表2-1に示します。

<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
<th>仕様</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>外形寸法</td>
<td>1)幅 40mm</td>
<td>突起部は含まない</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2)高さ 130mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3)奥行き 122mm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>電源</td>
<td>1)電圧 ＋24V±10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2)消費電流 200mA以下</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>物理的環境</td>
<td>1)動作周囲温度 0～＋55℃</td>
<td>結露しないこと</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2)保存温度 －20～＋70℃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3)相対湿度 20～95%RH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4)塵埃 導電性・可燃性の塵埃がないこと</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5)腐食性ガス 腐食性のガスがないこと</td>
<td>有機溶剤の付着がないこと</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6)使用高度 標高2000m以下</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>機械的稼動条件</td>
<td>1)耐振動 片振幅 0.15mm 定加速度 19.6m/s² 時間 各方向2時間（計6時間）</td>
<td>JIS C0911準拠</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2)耐衝撃 ピーク加速度 147m/s² 回数 各方向3回</td>
<td>JIS C0912準拠</td>
</tr>
<tr>
<td>5</td>
<td>電気的稼動条件</td>
<td>1)耐ノイズ ノイズ電圧 2000V パルス幅 1μs 立上がり時間 1ns</td>
<td>ノイズシミュレータ法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2)耐静電気放電 気中放電法 ±8kV</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>構造</td>
<td>盤内蔵型 IP3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>冷却方式</td>
<td>自然冷却</td>
<td></td>
</tr>
</tbody>
</table>

表2-1 一般仕様
2.2 機能仕様

SHPC-515の機能仕様を 表2-2 に示します。

<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>名称</td>
<td>高速アナログ出力モジュール</td>
</tr>
<tr>
<td>2</td>
<td>型式</td>
<td>SHPC-515-Z-A1</td>
</tr>
<tr>
<td>3</td>
<td>出力形式</td>
<td>(0〜+10V)と(±10V)はそれぞれ別の端子に出力。</td>
</tr>
<tr>
<td>4</td>
<td>チャンネル数</td>
<td>6チャンネル 2チャンネル差絶纜</td>
</tr>
<tr>
<td>5</td>
<td>デジタル変換値</td>
<td>-32768〜+32767</td>
</tr>
<tr>
<td>6</td>
<td>デジタル分解能</td>
<td>16ビット</td>
</tr>
<tr>
<td>7</td>
<td>誤差</td>
<td>1) 25℃ ±0.1%以下 2) 0〜55℃ ±1.0%以下</td>
</tr>
<tr>
<td>8</td>
<td>変換速度</td>
<td>0.05ms/6チャンネル</td>
</tr>
<tr>
<td>9</td>
<td>外部負荷抵抗</td>
<td>2.2KΩ以上</td>
</tr>
<tr>
<td>10</td>
<td>実装位置</td>
<td>基本ベース、拡張ベース 電源、CPUスロットを除く全てのスロット</td>
</tr>
<tr>
<td>11</td>
<td>PLCバスI/F</td>
<td>1) メモリバス 基本ベース実装時 2) IOバス 基本ベース/拡張ベース実装時(切替え)</td>
</tr>
<tr>
<td>12</td>
<td>占有スロット数</td>
<td>1スロット</td>
</tr>
<tr>
<td>13</td>
<td>サービスパネル</td>
<td>モジュールステータス表示器</td>
</tr>
</tbody>
</table>

2.3 出力変換特性

SHPC-515のアナログ出力の変換特性グラフを 図2-1 に示します。
3. 各部名称・機能

3.1 概観

SHPC-515 の外観と各部の名称を 図 3-1 に示します。

![外観と各部名称](image)

図 3-1 外観と各部名称

3.2 モジュールステータス表示器

モジュールステータス表示器は SHPC-515 の動作状態を表示する表示器です。

<table>
<thead>
<tr>
<th>名称</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO CNT</td>
<td>CPU モジュールがリフレッシュを実行しているときに点灯します。</td>
</tr>
<tr>
<td>RUN</td>
<td>モジュールの内部演算が動作しているときに点灯します。</td>
</tr>
<tr>
<td>ERR</td>
<td>モジュールの内部電源に異常が発生したときに点灯します。</td>
</tr>
</tbody>
</table>

表 3-1 モジュールステータス表示器
3.3 外部出力端子台
外部出力信号を接続する着脱式の端子台です。
端子の割り付けについては4.1端子割り付けを参照してください。

3.4 メモリバス/IOバス切替えスイッチ
メモリバス/IOバス切替えスイッチは、SHPC-515とCPUモジュール間での入出力データの
転送方式を設定するスイッチです。
SHPC-515を基本ベースに実装した場合、メモリバス/IOバス共に使用可能です。
拡張ベースに実装した場合はIOバスによる転送方式となります。
メモリバス/IOバスについては5.ソフトウェアI/Fで説明します。

<table>
<thead>
<tr>
<th>ポジション</th>
<th>データ転送方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF（下）</td>
<td>メモリバス方式</td>
</tr>
<tr>
<td>ON（上）</td>
<td>IOバス方式</td>
</tr>
</tbody>
</table>

表3-2 メモリバス/IOバス切替えスイッチ

図3-1 外観と各部名称
4. 配線

4.1 端子割り付け
外部端子台の信号割り付けを図4-1に示します。

<table>
<thead>
<tr>
<th>チャンネル0</th>
<th>チャンネル2</th>
<th>チャンネル4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:±10V出力(CH0)</td>
<td>1:0〜10V出力(CH0)</td>
<td>14:±10V出力(CH4)</td>
</tr>
<tr>
<td>4:0〜10V出力(CH1)</td>
<td>3:GND(CH0)</td>
<td>15:GND(CH4)</td>
</tr>
<tr>
<td>6:GND(CH1)</td>
<td>5:±10V出力(CH1)</td>
<td></td>
</tr>
<tr>
<td>8:±10V出力(CH2)</td>
<td>7:0〜10V出力(CH2)</td>
<td></td>
</tr>
<tr>
<td>10:0〜10V出力(CH3)</td>
<td>9:GND(CH2)</td>
<td></td>
</tr>
<tr>
<td>12:GND(CH3)</td>
<td>11:±10V出力(CH3)</td>
<td></td>
</tr>
<tr>
<td>14:±10V出力(CH4)</td>
<td>13:0〜10V出力(CH4)</td>
<td></td>
</tr>
<tr>
<td>16:0〜10V出力(CH5)</td>
<td>15:GND(CH4)</td>
<td></td>
</tr>
<tr>
<td>18:GND(CH5)</td>
<td>17:±10V出力(CH5)</td>
<td></td>
</tr>
<tr>
<td>20:NC</td>
<td>19:NC</td>
<td></td>
</tr>
</tbody>
</table>

図4-1 端子割り付け

4.2 接続例
配線例を図4-2に示します。
配線はツイストシールドケーブルを使用しSHPC-515側で接地して下さい。
（ただし、周囲のノイズ環境によっては両端で接地したほうがよい場合があります）

図4-2 配線例
5. ソフトウェアI/F

5.1 概要
SHPC-515ではCPUモジュールとの入出力データの転送方式として、デュアルポートメモリを使用し高速なデータ転送を可能としたメモリバス方式と、I/Oレジスタを使用してデータの転送を行うIOバス方式があります。
（バス方式の切替えについては3.4メモリバス/IOバス切替えスイッチを参照して下さい）

メモリバス方式では入出力レジスタをデュアルポートメモリ上に構成し、wレジスタが割り付けられます。オフセット／ゲインによる補正はF関数内で演算されます。
（オフセット／ゲインの調整方法については6.オフセット／ゲイン調整を参照してください）

5.2 F関数（メモリバス方式）
SHPC-515の関数シンボルと引数設定ダイアログボックスを図5-1に示します。F関数では4種類の引数を設定する必要があります。

![関数シンボルと引数設定ダイアログボックス](image)

① SHPC-515スロット番号
通信を行うSHPC-515のスロット番号を（1〜9）を指定します。
② パラメータ先頭
オフセット・ゲインのパラメータ先頭値
③ D/A出力先頭
出力データを書き込むアドレスを指定
④ オフセット/ゲイン調整領域
EEPROMに補正值を書き込みます
引数詳細

1) SHPC-515 スロット番号
指定したレジスタに使用するスロット番号を入力します。

(2) パラメータ先頭
SHPC-515 のパラメータを格納しているレジスタブロックの先頭レジスタ名を設定します。
図 5-2 にパラメータレジスタブロックの構成を示します。

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH0</td>
<td>CH1</td>
<td>CH2</td>
<td>CH3</td>
<td>CH4</td>
<td>CH5</td>
</tr>
</tbody>
</table>

オフセット/ゲイン調整
0: オフセット/ゲイン調整 有効（補正を行う）
1: オフセット/ゲイン調整 無効（補正を行わない）

オフセット調整実行
0: 通常モード
1: オフセット/ゲイン調整モード

出力モード選択
0: ±10V出力に設定
1: 0～10V出力に設定

(3) D/A 変換値先頭
CPU より送られてきたデータを格納するレジスタブロックの先頭のレジスタ名を設定します。
図 5-3 に D/A 設定値レジスタブロックの構成を示します。
6チャンネル分の D/A 設定値を格納しますので、6ワードの連続したレジスタを確保しておく必要があります。

<table>
<thead>
<tr>
<th>+0</th>
<th>CHO D/A 設定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>CH1 D/A 設定値</td>
</tr>
<tr>
<td>+2</td>
<td>CH2 D/A 設定値</td>
</tr>
<tr>
<td>+3</td>
<td>CH3 D/A 設定値</td>
</tr>
<tr>
<td>+4</td>
<td>CH4 D/A 設定値</td>
</tr>
<tr>
<td>+5</td>
<td>CH5 D/A 設定値</td>
</tr>
</tbody>
</table>

図 5-3 D/A 設定値レジスタブロック
（4）オフセット/ゲイン調整領域

<table>
<thead>
<tr>
<th>調整ステータス</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10オフセット</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>±10V ゲイン+</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>±10V ゲイン−</td>
<td>+3</td>
<td></td>
</tr>
<tr>
<td>0〜+10Vオフセット</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>0〜+10Vゲイン</td>
<td>+5</td>
<td></td>
</tr>
</tbody>
</table>

図5-4 オフセット/ゲイン調整領域

【調整実行】
ON→OFF の立ち上がりで選択されたチャンネルの補正値が EEPROM に書き込まれます。

【オフセット/ゲイン調整ステータス】
補正値を書き込んだ際に確認してください。

補正値範囲外ステータス
補正値範囲内ステータス
5.3 F関数使用例

SHPC-515のF関数使用例を図5-5に示します。

【引数】

| F515 | | |
|-------|--------|
| | | SHPC-515列挙番号 |
| | | 0:0000 |
| | | 拡大表示 |
| | | 0:0000 |
| | | 0:0000 |
| | | 0:0010 |
| | | 0:0000 |
| | | 0:0000 |
| | | 0:0000 |

図5-5 F関数使用例
5.4 I/O割り付け（IOバス方式）

I/Oバス方式使用時のメモリマップを図5-6に示します。

I/Oレジスタ

<table>
<thead>
<tr>
<th>CH</th>
<th>設定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>CHO D/A設定値</td>
</tr>
<tr>
<td>+1</td>
<td>CH1 D/A設定値</td>
</tr>
<tr>
<td>+2</td>
<td>CH2 D/A設定値</td>
</tr>
<tr>
<td>+3</td>
<td>CH3 D/A設定値</td>
</tr>
<tr>
<td>+4</td>
<td>CH4 D/A設定値</td>
</tr>
<tr>
<td>+5</td>
<td>CH5 D/A設定値</td>
</tr>
</tbody>
</table>

出力保持

IO_RESET：リセット時に出力を0Vにします。
IO_HOLD：リセット時に出力を保持します。
6. オフセット/ゲイン調整

6.1 概要
オフセット/ゲイン調整は本モジュールで使用しているD／A変換器などの電子部品の性能による特性の違いを補正するために行うものです。

6.2 調整手順

調整手順に従い各チャンネルのオフセット値、＋ゲイン値、－ゲイン値をそれぞれ調整します。

オフセット／ゲイン調整では出力電圧を測定し補正値を計算して入力しますが、誤差量に関しては設定値を微調整し、補正を行ってください。

オフセット／ゲイン調整で得た調整値はモジュール内のEEPROMに保存され、F関数を使用することで、オフセット／ゲイン調整値によるD／A設定値の補正を行うことができます。

6.2 調整手順

手順1 オフセット／ゲイン調整モードへ移行

オフセット／ゲイン調整 1: オフセット／ゲイン調整 有効（補正を行う）
オフセット調整実行 1: オフセット／ゲイン調整モード
出力モード選択 0: ±10V出力に設定

手順2 オフセット値の調整

① 調整対象となるチャンネルの出力を0Vにします。

② テスタで値を読み取り補正値を計算してオフセット／ゲイン調整領域に入力します。

手順3 ＋ゲイン値の調整

① 調整対象となるチャンネルの出力端子に＋8Vを出力します。

② テスタで値を読み取り補正値を計算してオフセット／ゲイン調整領域に入力します。
手順4 ゲイン値の調整（±10V出力のみ）
①調整対象となるチャンネルの出力端子に－8Vを出力します。
②テスタで値を読み取り補正値を計算してオフセット/ゲイン調整領域に入力します。
「オフセット/ゲイン調整領域」の「補正値書き込み」の調整対象となるチャンネルをOFF→ONとし、
ROMに書き込みます。
③調整ステータスが範囲内であることを確認する。
範囲内ビットがONとなれば±10V出力調整は完了です。
入力した設定値が範囲外である場合『異常終了』
ビットがONとなります。

±10V補正値範囲設定
オフセット値 (D／A 変換値で 8000H±1600H)
＋ゲイン値 (D／A 変換値で E666H±1600H)
－ゲイン値 (D／A 変換値で 199AH±1600H)

手順5
出力モード選択 1: 0～10V出力に設定

手順6 オフセット値の調整
①調整対象となるチャンネルの出力を0Vにします。
②テスタで値を読み取り補正値を計算してオフセット/ゲイン調整領域に入力します。

手順7 ＋ゲイン値の調整
①調整対象となるチャンネルの出力端子に＋8Vを出力します。
②テスタで値を読み取り補正値を計算してオフセット/ゲイン調整領域に入力します。
「オフセット/ゲイン調整領域」の「補正値書き込み」の調整対象となるチャンネルをOFF→ONとします。
③調整ステータスが範囲内であることを確認する。
範囲内ビットがONとなればオフセット調整は完了です。
入力した設定値が範囲外である場合『異常終了』
ビットがONとなります。

0～10出力補正値範囲設定
オフセット値 (D／A 変換値で 0000H+3300H)
＋ゲイン値 (D／A 変換値で CCCCH±3300H)
手順 8 オフセット／ゲイン調整モードの終了

① 補正値調整実行の全てのビットをOFFとし、パラメータの『オフセット調整実行』・『オフセット／ゲイン調整』ビットをOFFとし終了となります。
東洋電機製造株式会社

http://www.toyodenki.co.jp/

HEAD OFFICE: Tokyo Tatemono Yaesu Bldg, 1-4-16 Yaesu, Chuoh-ku.

東京都中央区八重洲一丁目 4-16 (東京建物八重洲ビル) 〒103-0028

TEL: +81-3-5202-8132 ~ 6 FAX: +81-3-5202-8150

サービス網
東洋産業株式会社

http://www.toyosangyou.co.jp/

本社　東京都中央区八重洲一丁目 4-16 (東京建物八重洲ビル) 〒103-0028

TEL: +81-3-5202-8132 ~ 6 FAX: +81-3-5202-8150

本資料記載内容は予告なく変更することがあります。ご了承ください。

TOYODENKI SEIZO K.K.

http://www.toyodenki.co.jp/

HEAD OFFICE: Tokyo Tatemono Yaesu Bldg, 1-4-16 Yaesu, Chuoh-ku.

東京都中央区八重洲一丁目 4-16 (東京建物八重洲ビル) 〒103-0028

TEL: +81-3-5202-8132 ~ 6 FAX: +81-3-5202-8150

サービス網
東洋産業株式会社

http://www.toyosangyou.co.jp/

本社　東京都中央区八重洲一丁目 4-16 (東京建物八重洲ビル) 〒103-0028

TEL: +81-3-5202-8132 ~ 6 FAX: +81-3-5202-8150

本資料記載内容は予告なく変更することがあります。ご了承ください。