lumit/Arithmetic controller

DG-AMP

User's mamual

Thank you very much for your purchase of our DG-AMP 1 unit arithmetic controller.
This hardware version of user's manual contains the explanation about hardware specifications and handling of the said controller. Please read this user's manual thoroughly for proper use of this controller.

Further, we request you to read related manuals shown in the following table concurrently.

Name	Manual No.	Contents
μ GPC SX series programming manual (Command word version)	IGJ057A	This manual describes the memory, language, and details of system definition, etc. of μ GPC SX series.
μ GPC SX series programming manual (Operation version)	IGJ058A	This manual explains the menu and icons, etc. of TDsxEditor and describes all operations of TDsxEditor.

Cautions

(1) It is forbidden to reproduce any part or all of the details of this manual without our permission.
(2) Please note that the details of this manual, specifications, etc. are subject to change without notice for the improvement.
(3) We made the details of this manual doubly sure, however, if you have any questions or you notice any error, contact our sales office published at the end of this manual. At such occasion, please inform the manual number published on the front cover as well.

Before using this product, read "Important Safety Instructions" thoroughly for proper use.
Here, labels of Important Safety Instructions are classified into "DANGER" and "CAUTION" and their meanings are as follows:
: Risk of death or serious injury from improper use.
: Risk of medium handicap, slight injury or damage to property from improper use.
FYI, even in the case of items classified into ! CAUTION, they have a probability of leading to the serious consequence as the case may be.
In either case, important details are described then always follow them.
Though we show the items requiring your special attention as follows, they are also indicated in the text of this manual.
While this controller is alive, do not touch the live part like terminal, etc. Electric shock may occur.
Always perform the mounting, removal, wiring works and maintenance/inspection with power supply to this
controller OFF. Hot work may result in electric shock, malfunction, and breakdown.
Configure the emergency stop and interlock circuits at the outside of PC. Breakage and accident may occur due to
breakdown in PC. breakdown in PC.

ODo not use the items that were found damaged or deformed during unpacking. It may cause fire, malfunction and breakdown.

- Do not apply impact to the product through drop or rollover, etc. It may cause breakage and breakdown of the product.
- Mount the product in accordance with the details published in the instruction manual and others. Defective mounting may cause drop of product, malfunction and breakdown.
- Use this product under rated voltage and current published in the instruction manual and others. Use of this product under the voltage and current other than the rated may cause fire, malfunction and breakdown. Use (Store) this product under environment published in the instruction manual and others.
- Use (Storage) of this product under the environment with high temperature, high humidity, condensation, dust, corrosive gas, oil, organic solvent and especially big vibration/impact may cause to electric shock, fire, malfunction, breakdown when the product is used.
-Select the electric wires suitable for voltage to be applied and current to be passed to tighten them at the specified torque. Defective wiring and tightening may cause fire, drop of product, malfunction and breakdown.
- Execute the wiring work so as to prevent the foreign matter, such as dust, electric wire scrap, iron powder from entering into inside of the equipment. Fire, accident, malfunction and breakdown may result.
- Always ground the grounding terminal. Failure to perform grounding work may cause electric shock and malfunction.
-Check the terminal screws and mounting screws for secure tightening periodically. Use of this product with such screws loosen may cause fire and malfunction.
- Always fit the terminal cover to the terminal block. Electric shock and fire may occur.

Operations such as program change, forced output, start and stop while running shall be performed upon completion of check for the safety.
Mistake in operation may cause the machine to operate and may result in breakage and accident of the machine.

- Insert the tool connector in proper direction. Malfunction may result.

OBefore you touch PC, first touch the grounded metal, etc. to make the static electricity charged in the human body, etc. discharge. Excessive static electricity may cause malfunction and breakdown.

- Perform the wiring securely in accordance with the details published in the instruction manual and others. Wrong wiring may cause fire, accident and breakdown.
OWhen you pull out the plug from the receptacle, do not pull it out holding the cord. Fire and breakdown due to break of cable may result.
- Do not make repairs of this product absolutely at the site and request its repair to us. It may cause fire, accident and breakdown.
- When you try to clean this product, turn OFF the power supply and then use the towel soaked with tepid water, etc. Use of thinner or other organic solvent may cause melting or discoloring of the equipment surface.
- Do not modify or disassemble the product. It may cause breakdown.
- When you dispose of this product, handle this product as industrial waste.

OProduct published in this manual is not the one designed or manufactured for the sake of being used in the equipment or system that affects human life.

- When you study the use of product described in this manual for the control of nuclear energy, aerospace, medical care, traffic equipment, passenger mobile unit or special application for these systems, etc. make an inquiry to our sales contact.
-When you apply the product published in this manual to the equipment that breakdown of our product affects the life or occurrence of serious loss can be expected, always install the safety equipment.
* Manual number is published at lower right of the front cover of this manual.

Print date * Manual number Revisions
October 2005 QG17730 Third printed

Revision history

Print date	Manual No.	Revisions
04-11-05	1st	Prepared newly
05-03-25	2nd	Addition of analog input terminal (with insulation function), (current input) and pulse-train (rate multiplier) output terminal
05-10-03	3rd	Addition of RESET button, additional writing for analog output specifications and body mounting method, etc.

1-1 Overview 8
2-1 System configuration 9
2-2 Digital input / Input memory layout 10
2-3 Analog input memory / Input memory layout 10
2-4 Frequency measuring register 10
2-5 Digital output memory / Output memory layout 11
2-6 Analog output memory / Output memory layout 11
2-7 Pulse output memory / Output memory layout 11
2-8 OPCN interface register 12
2-9 Announce register 12
3-1 DG-AMP general specification 13
3-2 Performance specification 14
3-3 DG-AMP Power supply specification 14
3-4 DC voltage input / Input specifications 15
3-5 Relay output / Output specifications 15
3-6 Transistor output / Output specifications 16
3-7 Analog input specifications 16
3-8 Analog output specifications 16
3-9 Communication I/F specifications 17
3-10 TOOL I/F communication specifications 17
3-11 I/O terminal / Terminal name 18
3-12 Digital input terminal 19
3-13 PG input terminals 20
3-14 FI Input terminal 21
3-15 OPCN-1 Input terminal 23
3-16 Analog input terminal 24
3-17 Analog input terminal (with insulation function) 25
3-18 Analog input terminal (current input) 26
3-19 Analog output terminal 27
3-20 Pulse output terminal 28
3-21 Pulse-train (rate multiplier) output terminal 29
3-22 Digital (Relay) output terminal 30
3-23 Name and function of respective sections 31
3-24 Outside shape / Mounting dimensions 33
3-25 Body mounting method 34
4-1 Programming 35
4-2 Editing of the circuit 36
4-3 Circuit symbol types 37
4-4 Download/Upload 39
4-5 Monitor/Debug 40
4-6 How to check the firmware version 41
5-1 Console 42
5-2 Indication of the data 43
5-3 Writing of the data 43
5-4 Setting of the time 44
5-5 Version indication of firmware 44
Remarks 1: Running status 45

1-1 Overview

(1) PLC functions

The intelligible GPC language was adopted as DG-AMP. The application program which has the same function as our company's PLC μ GPCsx series can be created.
(2) External I/F

Digital input and output (DC12V/DC24V), analog input and output (-10 V to +10 V), and communication I/F (RS232C, RS422, RS485) are standard equipment of external I/F, to built various applications.
(3) Frequency counter function

PG input is exclusively for two-phase and can measure the input pulse frequency up to 36 kHz as frequency counter of PG.
FI input can measure the frequency of input pulse up to 36 kHz as frequency counter for single phase or two-phase that combines two channels.
(4) I/F for internal extension BUS

This controller installs internal I/F for extension BUS that can place communication option board for our inverter on board and installation of OPCN-64 to the broad makes this controller as OPCN-1 slave equipment and allows the connection with other master equipment.
(5) Simplified liquid crystal console

This controller has console LCD indicator, check of data stored in the internal resistor can be made without personal computer. In addition, data change is possible by the operation from the switch part.

2-1 System configuration

- Connect to the external communication equipment through exclusive connector.
-Connection with digital input / output and analog input is made at the terminal block.

2-2 Digital input / Input memory layout

Resistor name	Relay name	Terminal No.	Details
i00000	I00000	DI-0	Digital input signal
	I00001	DI-1	
	I00002	DI-2	
	I00003	DI-3	
	I00004	DI-4	
	I00005	DI-5	
	I00006	DI-6	
	I00007	DI-7	
	I00008	DI-8	
	I00009	DI-9	
	I0000A	DI-A	
	I0000B	DI-B	
	I0000C	DI-C	
	I0000D	DI-D	
	I0000E	DI-E	
	I0000F	DI-F	

2-3 Analog input memory / Input memory layout

Resistor name	Terminal No.	Details
i00002	AI-0	(14 bit $\pm 10 \mathrm{~V} \quad$ non-insulation between channels) Read value (14 bit $\pm 10 \mathrm{~V} \quad$ non-insulation between channels) Read value i00003
AI-1	(14 bit $\pm 10 \mathrm{~V}$ non-insulation between channels) Read value	
i00004	AI-2	(14 bit $\pm 10 \mathrm{~V} \quad$ non-insulation between channels) Read value
i00005	AI-3	$(14$ bit $\pm 10 \mathrm{~V} \quad$ insulation between channels) Read value
i00006	AI-4	(14 bit $\pm 10 \mathrm{~V} \quad$ insulation between channels) Read value
i00007	AI-5	AI-6
i00008	(10 bit 4 to 20 mA current input non-insulation CH1) Read value	
(10 bit 4 to 20 mA current input non-insulation CH2) Read value		
i00009		System reserved
i0000A		System reserved
i0000B		System reserved
i0000C		System reserved
i0000D		System reserved
i0000E		System reserved
i0000F		

2-4 Frequency measuring register

Resistor name	Details	
i00010	2-phase PG counter frequency measured value, A frequency	
i00011	2-phase PG counter frequency measured value, B frequency	
i00012	FI-1 frequency measured value	
i00013	FI-2 frequency measured value	
i00014	2-phase PG counter direction of rotation 2-phase FI counter direction of rotation	
i00015	2-phase PG counter number of detected measuring errors (sum of A and B)	
i00016	FI-1 counter number of detected measuring errors	
i00017	FI-2 counter number of detected measuring errors	
i00018	PG-A UP/DOWN count value	
i00019	PG-B UP/DOWN count value	
i0001A	FI-1 UP/DOWN count value	
i0001B	FI-2 UP/DOWN count value	

2-5 Digital output memory / Output memory layout

Resistor name	Terminal	Terminal No.	Details
o00400	O00400	DO-0	Digital output signal
	O00401	DO-1	
	O00402	DO-2	
	O00403	DO-3	

2-6 Analog output memory / Output memory layout

Resistor name	Details	
o00042	AO-0 (DAC CH1)	
o00043	AO-0 (DAC CH2)	
o00044	AO-0 (DAC CH3)	

2-7 Pulse output memory / Output memory layout

Resistor name	Details	
o00050	PO-0 (Pulse output) Set pulse width/Output level	
o00051	PO-1 (Pulse output) Set phase lag width/Output level	
o00052	PO-2 (Pulse output) Set phase lag width/Output level	
o00053	PG/FI phase mode	
o00054	PO-0 to 2 Reference frequency rate	
o00055	PO-3 (Rate multiplier) divider value after output	
o00056	PO-3 (Rate multiplier) set value	
o00057	PO-3 (Rate multiplier) control data	
o00058	System reserved	

2-8 OPCN interface register

Resistor name	Details			
w00060	OPCN-1 Output register (Master > DG-AMP)			
w00061		Number of output words		
w00062				
w00063				
w00064				
w00065				
w00066				
w00067				
w00068				
w00069	OPCN-1 input register (Master <-DG-AMP)			
w0006A		Number of input words		
w0006B				
w0006C				
w0006D				
w0006E				
w0006F				
w003FC	OPCN-1 Number of input words set value			
w003FD	OPCN-1 Number of output words set value			
w003FE	OPCN-1 Baud rate set value			
w003FF	OPCN-1 Parameter setting flag			

2-9 Announce register

Resistor name	Details	Unit	Example
z00000	Running status (see note 1)		
z00001	Running status (see note 1)		
z00002	Running status (see note 1)	BCD mSEC	
z00003	(Task 1 execution time)	BCD mSEC	
z00004	(Task 2 execution time)		0501 H
z00005	(YYMM indication) Time		0123 H
z00006	(DDHH indication) Time		5959 H
z00007	(MMSS indication) Time		
z00008			
z00009	(0.25m SEC counter)	1 mSEC	
z0000A	(1SEC counter)		
z0000B	(System task counter)		
z0000C	System reserved		
z00034	System define information number of used words		
z00035	Function number of used words		
z00036	Program number of used words		
z00037	General-purpose file information number of used		
words			
		Sec. (real number)	
zr002C	Task 1 scan time	Sec. (real number)	
zr002E	Task 2 scan time		

3-1 DG-AMP general specification

Item		Specification
Physical environment	Operation ambient temperature	$-0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
	Storage (Transportation) temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
	Relative humidity	20 to 95\% No condensation
	Level of contamination	Level of contamination 2 Note 1)
	Corrosion resistance	No corrosive gas. No adhesion of organic solvent
	Working altitude	2000 m or less above altitude (Atmospheric pressure during transportation shall be 70 kPa or more)
Mechanical operating conditions	Vibration proof	Single amplitude: 0.15 mm Constant acceleration: $19.6 \mathrm{~m} / \mathrm{s}^{2}$ Up-and-down motion for 4 hours, transverse/longitudinal oscillation for 2 hours each, 8 hours in total
	Impact resistance	Peak acceleration: $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in each direction(15G)
Electric operating conditions	Noise resistance	Noise simulator method Rise time 1ns, Pulse width $1 \mu \mathrm{~s}, 1 \mathrm{kV}$
	Static electricity discharge resistance	Contact discharge method: $\pm 6 \mathrm{kV}$, Aerial discharge method: $\pm 8 \mathrm{kV}$
	Radiation electromagnetic field resistance	$10 \mathrm{~V} / \mathrm{m}$ (80 MHz to 1000 MHz)
Structure		Structure board-contained type
Cooling method		Natural cooling
Mass		4kg

Note 1) Level of contamination 2: Normally, a condition that conductive contamination is absent. However, in some cases, temporally conductivity may develop due to condensation.

3-2 Performance specification

Item		Specification
Arithmetic control mode		Stored program cyclic scan mode
I/O control mode		Direct refresh mode
Programming language		GPC language (Ladder diagram, data flow)
Program capacity		64 k word (About 800 pages)
Number of inputs/outputs		512 word
Data memory	I/O memory (i0/o0)	512 word
	Global memory (g0,gr)	16384 word
	Local memory	16384 word
	File memory (fi,fr)	65536 word
	Retain memory (ri,rr)	65536 word
Self-diagnostic function		Watchdog timer
Memory backup		Program (including file memory), parameter - Flash ROM Retain memory - Built-in RAM (At the time of battery option un-equipped, memory kept one week after power off.) (At the time of battery option equipped, backup time for 10 years.) Battery option: Lithium primary battery.
Calendar		± 60 seconds/month $\left(25^{\circ} \mathrm{C}\right)$ (At the time of battery option un-equipped, memory kept one week after power off.)
Digital I/O		$\begin{array}{ll}\text { Sink/Source input } & 16 \text { points } \\ \text { Sink transistor output } & 4 \text { points }\end{array}$
Analog input		8CH
Analog output		3CH
Communication I/F		2CH

Note 1) When battery option equipped, exchange if out of guarantee term, even if there is battery capacity remnant.
Note 2) When battery option equipped, battery will not be consumed in the state of main power turned on.

3-3 DG-AMP Power supply specification

Item	Specification
Rated input range	AC100V/200V (AC85V to VC 265 V
Rated input current	AC100 -0.6 A or less AC200v -0.35 A or less
Rated input frequency (Frequency tolerance)	$50 / 60[\mathrm{~Hz}]$ (48 to $62[\mathrm{~Hz}])$
Input rush current	$20[\mathrm{~A}]$ Typ. AC $100[\mathrm{~V}]$
Over-current protection	Trips when the current exceeds 105% or more of the rated current, automatic reset
Over-voltage protection	Trips when the current falls within the range from 115 to 140% of the rated voltage
Power consumption	30W or less

3-4 DC voltage input / Input specifications

Item			Specification
Input signal conditions	Rated voltage		DC12/24V
	Maximum allowable voltage		DC28V
	Allowable ripple rate		1\% or less
Input circuit characteristics	Input mode		Sharing between source and sink (Bi-directional)
	Rated current		About 5mA (at 24V), about 2.5 mA (at 12V)
	Input impedance		About $4.7 \mathrm{k} \Omega$
	Standard operating range	$\mathrm{OFF} \rightarrow \mathrm{ON}$	7.5 to 8.5 V
		$\mathrm{ON} \rightarrow$ OFF	7.5 to 8.5 V
	Input type		DC type 1
	Input delay time		0.5 ms
External connection			Terminal block
Insulation mode			Photo-coupler insulation
Dielectric strength			AC1500V for 1 minute between input terminal package and FG
Insulation resistance			$10 \mathrm{M} \Omega$ or more by means of insulation resistance tester of DC500V Between output terminal package and FG

3-5 Relay output / Output specifications

Item			Specification
Output power supply condition	Rated voltage		AC250V DC30V
	Allowable voltage range		AC250V
Output circuit characteristics	Output type		Relay output
	Maximum load current		AC/DC 2A (common 5A)
	Minimum switching voltage/current		DC0.1V 0.1mA
	Output delay time	OFF->ON	10ms or less
		ON-> OFF	5 ms or less
Output protection type	Built-in fuse		None
	Output type		Relay output
	Surge cutback circuit		Varistor
	Other output protection		None
Maximum switching speed			100 per sec. or less
Mechanical life			20 million times
Electric life			100,000 times or over with max load current
External connection			Terminal block
Output signal indication			None
Insulation mode			Dry contact output
Dielectric strength			AC1500V for 1 minute
Insulation resistance			$160 \mathrm{M} \Omega$ or more With DC500V megger

3-6 Transistor output / Output specifications

Item		Specification
Output power supply condition	Rated voltage	12 V
	Allowable voltage range	12 V
	Output type	Sink
	Rated current	About $500 \mathrm{~mA} / 1$ point
	Output voltage drop	15 V or less
	Output delay time	OFF->ON
	ON-> OFF	0.5 ms or less
	Leakage current during OFF	0.5 ms or less
	Output type	Maximum 20μ A or less (1 point)
Output protection	Transistor	
External connection	Resistor 10Ω	
Insulation mode	Terminal block	
Dielectric strength	AC1500-coupler insulation for 1 minute between input terminal package and FG	
Insulation resistance	$10 \mathrm{M} \Omega$ or more by means of insulation resistance tester of DC500V Between output terminal package and FG	

3-7 Analog input specifications

Item	Specification	
Number of input channels	8 channels	
Input impedance	About $1 \mathrm{M} \Omega$	
Maximum allowable input	$\pm 15 \mathrm{~V}$	
Conversion characteristics	Analog input range	Digital conversion value
	-10 V to 10 V	-8192 to 8191
Resolution	14 bit (Minimum resolution about 1.2 mV)	
Comprehensive accuracy (Relative to full scale)	0.1\%	
Type of digital conversion value	Integer	
Sampling time	$500 \mu \mathrm{~s}$	
Input filter time	None	
Input delay time	500μ s or less	
Other functions	None	

3-8 Analog output specifications

Item	Specification	
Output channel number	3 channels	
External load resistance	$1 \mathrm{k} \Omega$ or more	
Analog output range	-10 V to 10 V	Analog setting value
Conversion characteristics	Digital setting value	-10 V to 10 V
	-8192 to 8191	1.2 mV)
Resolution	14 bit (minimum resolution: about	0.1%
Integrated accuracy (to full-scale)	Whole number	
Form of digital convert value	$500 ~ \mu \mathrm{~s}$ or less	
Conversion cycle		

3-9 Communication I/F specifications

Item		Specification	
		RS232C	RS422/, RS485
External interface	Port	1 channel	1 channel
	Transmission mode	Full duplex communication mode	
	Transmission rate	$2400 / 4800 / 9600 / 19200 / 31250 / 38400 \mathrm{bps}$	
	Transmission distance	Within 15 m	Within 1 km (Provided that transmission rate is 19.2 kbps or less)
	Connectable units	$1: 1: 1$	
	Connection mode	Connector	
Transmission method			
Based on μ GPC language function			

3-10 TOOL I/F communication specifications

Item		Specification
External interface	Port	1 channel
	Transmission mode	Full duplex communication mode
	Transmission rate	38400 bps
	Transmission distance	Within 5m
	Connectable units	$1: 1$
	Connection mode	D-SUB 9P (plug housing) Connection with PC is made by cross cable (receptance housing)
	Modem power supply	-
Transmission method	Use of application is not available	
	PLC I/F-specific command	

3-11 I/O terminal / Terminal name

T1

DI-0
DI-1
DI-2
DI-3
DI-4
DI-5
DI-6
DI-7
COM DI
DI-8
DI-9
DI-A
DI-B
DI-C
DI-D
DI-E
DI-F
PG -A
PG-B
PG-12V
PG-0V
FI-1
FI-2
OPCN-A
OPCN-B
A
B

T3

$$
\begin{aligned}
& \mathrm{S} \mathrm{D}+422 \\
& \mathrm{~S} \mathrm{D}-422 \\
& \mathrm{GND} \\
& \mathrm{R} \mathrm{D}+42 \\
& \mathrm{R} \mathrm{D}-42 \\
& \mathrm{~S} \mathrm{D}-23 \\
& \mathrm{R} \mathrm{D}-2
\end{aligned}
$$

3-12 Digital input terminal

- Signal input is available at source input or sink (Common to 16 points).
- In the case of source input, ON is recognized when terminal voltage is 8 V or more.

Terminal No.	Internal relay No.	Terminal No.	Internal relay No.
DI-0	I00000	DI-8	I00008
DI-1	I00001	DI-9	I00009
DI-2	I00002	DI-A	I0000A
DI-3	I00003	DI-B	I0000B
DI-4	I00004	DI-C	I0000C
DI-5	I00005	DI-D	I0000D
DI-6	I00006	DI-E	I0000E
DI-7	I00007	DI-F	I0000F

Terminal No.	
PG-A	Phase A $\left(90^{\circ}\right.$ lead $)$ signal
PG-B	Phase A $\left(90^{\circ}\right.$ delay $)$ signal
PG-0V	PG common line
PG-12V	External power supply output for PG

Register No.	Details
i00010	PG frequency $-\mathrm{A}(0 \mathrm{~Hz}$ to 36000 Hz$)$
i 00011	PG frequency $-\mathrm{B}(0 \mathrm{~Hz}$ to 36000 Hz$)$
i 00015	PG $-\mathrm{A}+\mathrm{B}$ error counter (change detection of 10 Hz or over)
i 00018	PG-A UP/DOWN count value (-32768 to 32767)
i00019	PG-B UP/DOWN count value (-32768 to 32767)

Relay No.	Details
I00140	PG’s direction of rotation: (Setting to 1 leads to reverse rotation, 0 normal rotation) (Toyo’s standard direction of rotation) Direction of rotation: (Setting to 1 leads to lead of phase A) (Setting to 0 leads to lead of phase B)
O00530	PG frequency 1/2 display (1 to 1/2, 0 to 1/1)
O00531	2-phase PG selection (1 to 2-phase, 0 to single phase/2 channels)

(Supplement explanation) To return to single phase after selection of 2-phase PG, reset the power. Also, when 2-phase PG is selected, i00011, i00019 and I00140 are invalid. (Single phase to see I00140) In PG direction of rotational, PG-A is normal rotation by phase delay of 90° in selection of single-phase mode. (Toyo's standard mode)

Also, when 2-phase mode is selected, i 0010 will be +value at 90° phase delay of PG-A, and -value at 90° phase lead of PG-A.

3-14 FI Input terminal

Normally this terminal is used in single-phase 2 channels, however, use as 2 -phase 1 channel is also available.

Terminal No.	Details
FI-1	FI-1CH (Phase A signal)
FI-2	FI-2CH (Phase B signal)
PG-0V	FI/PG common line
PG-12V	External power supply output for PG

Register No.	Details
i00012	FI-1 frequency $(0 \mathrm{~Hz}$ to 30000Hz)
i00013	FI-2 frequency $(0 \mathrm{~Hz}$ to 30000Hz)
i00016	FI-1 error counter (change detection of 10Hz or over)
i00017	FI-2 error counter (change detection of 10Hz or over)
i0001A	FI-1 UP/DOWN count value (-32768 to 32767)
i0001B	FI-2 UP/DOWN count value (-32768 to 32767)

Relay No.	Details
100141	PG's direction of rotation: (Setting to 1 leads to reverse rotation, 0 normal rotation) (Toyo's standard direction of rotation) Direction of rotation: (Seting to 1 leads to lead of phase A) (Setting to 0 leads to lead of phase B)
O00532	PG frequency $1 / 2$ display (1 to $1 / 2,0$ to $1 / 1$)
O00533	2-phase PG selection (1 to 2-phase, 0 to single phase/2 channels)

(Supplement explanation) To return to single phase after selection of 2-phase PG, reset the power. Also, when 2-phase PG is selected, i00013, i0001B and I00141 are invalid. (Single phase to see I00141) In PG direction of rotational, FI-1 is normal rotation by phase delay of 90° in selection of single-phase mode. (Toyo's standard mode)

Also, when 2-phase mode is selected, i0012 will be +value at 90° phase delay of FI-1, and -value at 90° phase lead of FI-1.
[About PG and FI input/maximum input frequency]

There are 4 channels including both, but maximum frequency has limits.

<Formula>

When channel 1 to 4 is f 1 to f 4 of maximum frequency, it is possible to use in the following condition: $\quad \mathrm{f} 1+\mathrm{f} 2+\mathrm{f} 3+\mathrm{f} 4<36 \mathrm{kHz}$

1) Up to 36 kHz is usable in case of 1 channel.

Each will be limited to $18 \mathrm{kHz}(36 \mathrm{kHz} / 2)$ in case of 2 channels.
Each will be limited to $9 \mathrm{kHz}(36 \mathrm{kHz} / 4)$ in case of 4 channels.
2) Both PG mode and FI input can select 2-phase mode

In this case, 2-phase 1 channel (A/B phase input) can also select 36 kHz .
3) Selecting of PG frequency $1 / 2$ display ($1 / 2 \mathrm{~Hz}$ display mode)

Because the display becomes minus value for the frequency of 32767 Hz , mode to display 18000 at 36 kHz is selectable.

Terminal No.	Details
OCPN-A	OPCN-1 Cable A line signal
OCPN-B	OPCN-1 Cable B line signal
OCPN-G	OPCN-1 Cable SG line

Register No.	Details
w00060	OPCN-1 Output register (Set value from master)
to	(Portion set for w003FD)
w000xx	(Use as I00xxx is also available)
w000xx+1	OPCN-1 Input register (Monitor to master)
to	(Portion set for w003FC)
w000yy	(Use as O00xxxis also available)
w003FC	OPCN-1 Number of input words set value (7 to 19)
w003FD	OPCN-1 Number of output words set value (6 to 12)
w003FE	OPCN-1 Baud rate set value (0 to 3, 3:1M)
w003FF	OPCN-1 Parameter setting flag (3FCh)

3-16 Analog input terminal

Terminal No.	Details
AI-0	0Ch Input signal
AI-1	1Ch Input signal
AI-2	2Ch Input signal
AI-3	3Ch Input signal
AI-0V	AI Common line

Register No.	Details
i00002	AI-0 Input data (-8192 to 8191)
i 00003	AI-1 Input data (-8192 to 8191)
i 00004	AI-2 Input data (-8192 to 8191)
i 00005	AI-3 Input data (-8192 to 8191)

Terminal No.	Details
AI-4+	4Ch+ input signal
AI-4-	4Ch- input signal
AI-5+	5Ch+ input signal
AI-5-	5Ch- input signal

Register No.	Details
i00006	AI-4 input data (-8192 to 8191)
i00007	AI-5 input data (-8192 to 8191)

Put the resistor in series and can be used for current input.
In case of direct current input, range of 0 to 3 V will be the range of condition.

Terminal No.	Details
AI-6	6Ch+ Input signal
AI-0V	6Ch- Input signal
AI-7	7Ch+ Input signal
AI-0V	7Ch- Input signal

Register no.	Details
i 00008	$\mathrm{AI}-6$ input data (0 to 1023)
i 00009	$\mathrm{AI}-7$ input data (0 to 1023)

Terminal No.	Details
AO-0	0Ch Output signal
AO-1	1Ch Output signal
AO-2	2Ch Output signal
AO-0V	AO Common line

Register No.	Details
o00042	AO-0 Output data (-8192 to 8191)
o00043	AO-1 Output data (-8192 to 8191)
o00044	AO-2 Output data (-8192 to 8191)

In addition to use as pulse output, this terminal can be used also as digital (transistor) output.

Terminal No.	Details
PO-0	0Ch Output signal (Master pulse signal)
PO-1	1Ch Output signal (Master synchronization signal-1)
PO-2	2Ch Output signal (Master synchronization signal-2)
PO-3	3Ch Output signal (Master synchronization signal-3)
PO-0V	PO Common line

Set each relay to 1 to use digital (transistor) output.

Terminal No.	Relay name	Details
PO-0	O00500	1 (turn off O00501 to O0050F)
PO-1	000510	1 (turn off O00511 to O0051F)
PO-2	000520	1 (turn off O00521 to O0052F)

Register No.	Details
$\circ 00050$	Setting to PO-0 (Pulse output) set pulse width/output level 2 or more causes all 3 channels to be pulse output.
$\circ 00051$	PO-1 (Pulse output) set pulse width/Output level
$\circ 00052$	PO-2 (Pulse output) set pulse width/Output level
$\circ 00053$	PO-3 (Pulse output) set pulse width/Output level
$\circ 00054$	PO-0 to 3 Reference frequency rate (Reference clock 12MHz)
	$0: 1 / 1,1: 1 / 4,2: 1 / 16,3: 1 / 64$
$4: 1 / 256,5: 1 / 1024$	

Master pulse signal

Master synchronous signal 1

o 00051
Master synchronous signal 2

Only for pulse train output use.

Terminal No.	Details
$\mathrm{PO}-3$	Pulse train (rate multiplier) output
$\mathrm{PO}-0 \mathrm{~V}$	PO common line

Register No.	Details
00055	Divider value after rate multiplier output $(2$ to 1022) $: \mathrm{M}$ of example below
000056	Rate multiplier set value $(0$ to 65535) $: \mathrm{N}$ of example below
000057	Rate multiplier control data (normally, set 512)

[Block diagram]
o00056
N

Output frequency $\mathrm{f}=60 * 1000000 * \mathrm{~N} /(\mathrm{M} * 2 * 65536)$

[Notice]

N is selectable between 0 to 65535 (-1)
M is selectable between 2 to 1022 (smaller value will make inaccuracy larger, we recommend 100 or over)
(Setting example)

$$
\text { At } \begin{aligned}
\mathrm{N} & =4096, \quad \mathrm{M}=100 \\
\mathrm{f} & =60 * 1000000 * 4096 /(100 * 2 * 65536) \\
& =18750(\mathrm{~Hz})
\end{aligned}
$$

Terminal No.	Details
DO-0	0Ch Output signal (Relay 0 contact output signal)
DO-1	1Ch Output signal (Relay 1 contact output signal)
DO-2	2Ch Output signal (Relay 2 contact output signal)
DO-3	3Ch Output signal (Relay 3 contact output signal)
DO-0V	Relay contact common line

Register No.	Details
o00040	Really 4 points lump writing data

Register No.	Details
O00400	DO-0 (Relay output) ON/OFF data
O00401	DO-1 (Relay output) ON/OFF data
O00402	DO-2 (Relay output) ON/OFF data
O00403	DO-3 (Relay output) ON/OFF data

(1) Power supply terminal

This terminal is used for supplying the power from outside.
Ground E terminal to independent and stable C type or D type terminals.

Polarity
AC (L1)
AC (L2)
E

(2) RESET button

Use only when resetting the DG-AMP alone.
(Note) Do not push the reset button while operating.
(3) Connectors for communication I/F

These connectors are used when communicating by RS422/RS485/RS232C.
Use exclusive connector.
(4) Programming tool connecting connector

This is the connector for connecting with programming tool (TDsxEditor).
Use D-SUB 9-pin cross cable.
(5) Console switch section

These are switches for data indication and writing operation. See Chapter 5.
(6) Console LCD indicator

This is LED to indicate the control status of DG-AMP.

Symbols	Name	Lighting condition
PWR(G)	POWER indication	Turns on when power is turned ON (Internal power supply normal).
RUN(G)	RUN indication	Turns on while CPU is running. Blinks while CPU stops (including major breakdown stop).
ALM(R)	ALARM indication	Turns on when error occurs.
COM(Y)	COMMUNICATION indication	Turns on when communication is established on communication board.
SD/RD(G)	SEND/RECEIVE indication	Blinks when data is sent / received.

(7) Console LCD indicator

This section indicates the data in the internal register.
(8) Mounting hole

Use M3 mounting screws.
(9) Terminal block for digital I/O

This terminal block is used when connection with external digital I/O signal is made. Use M3 fork terminal.

The attachment position of a battery option.
The inside of DG-AMP is equipped with a battery option.
The cover on the left side of DG-AMP can be removed and exchanged.

(1) In case of mounting DG-AMP to the control panel, be sure to insulate from the frame of the control panel and perform independent grounding (C type or D type grounding) for FG terminal.
(2) Put noise-cut trance or noise filter to AC power supply.
(3) Use clipping terminal for the wiring to the terminal block. Be careful to the inclination of the clipping terminal and secure insulation distance (more than 3.2 mm) from the adjacent. Also use insulation cover for the clipping terminal.
(4) Arrange more than 50 mm from the ambient equipment for ventilation.
(5) Separate from high voltage devise and power devise as possible. Do not parallel wiring with those devise.
(6) Mount vertically from the panel floor and do not mount horizontally.

4-1 Programming

Programming of DG-AMP is performed by TDsxEditor.
When you start TDsxEditor, following screen will appear.

First, prepare the project through "File" and "New Project", then prepare the program through "Edit" and "Program new preparation". Details of control are described in the program.

Select the task to which you want to add the program. Priority in computation becomes the relationship as Task $1>$ Task 2 . Normally, relationship is scan time of Task $1>$ Task 2.

Scan time designates the execution period of the task. Designation in 1 msec is available. (As the settings for the value of 1 msec or less, designation of 2 settings, 0.25 msec and 0.5 msec is available)

4-2 Editing of the circuit

Edition of the control details can be performed by double-click on "Circuit" in the program.
Edition of "Circuit" gets available after "Program new preparation" has been performed.

While editing new program, opening of the circuit results in "Writing mode". While editing existing program, select "Writing mode".

Circuit symbol can be placed by switching following menus

\square Select "Ladder"
\square
\square Select "Main menu".

When you want to shift the mode to the reading mode, select "Writing exit". Mode shifts to reading mode.

4-3 Circuit symbol types

There are following types of symbol.
Ladder diagram language

Symbol	Operation	Data type
100000	Contact"A"	
SI S0	$S O=100000$ \& SI	
100000	Contact"B"	
	$\mathrm{SO}=\overline{\mathrm{IOOOOO}} \& \mathrm{SI}$	
	Logic inversion	
	$\mathrm{SO}=\overline{\mathrm{SI}}$	
$\text { Só } 000000 \text { ل }$	Coil	
	$000000=$ So	

$\xrightarrow[(1)]{S I}$	Connector load store	bit int word	real BCD8 BCD4
L	Label		
	Use as a jump destination label		
\cdots	Control command		
	JPXXXX:Page or label jump RETURN:Return from subroutine		

Data flow language

Symbol	Operation	Data type
$\begin{gathered} \mathrm{miO} 000 \\ \square \quad \mathrm{NO} \end{gathered}$	Load $\mathrm{NO}=\mathrm{miOOOO}$	int BCD8 word BCD4 real
	Load and store $\begin{aligned} & \mathrm{miOOOO}=\mathrm{N} 1 \\ & \mathrm{NO}=\mathrm{miOOOO} \end{aligned}$	int BCD8 word real reD4
$\stackrel{\mathrm{N} 1 \mathrm{mi} 0000}{\square}$	Store $\mathrm{miO} 000=\mathrm{N} 1$	$\begin{array}{ll} \text { int } & \text { BCD8 } \\ \text { word } & \text { BCD4 } \\ \text { real } & \end{array}$
$\begin{aligned} & 100000 \\ & N 0 \\ & \hline-N 0 \end{aligned}$	Contact"a" $\begin{aligned} & \mathrm{NO}=\mathrm{N} 1 \quad \text { When } 100000=1 \\ & \mathrm{NO}=0 \end{aligned} \text { When } 100000=0$	int real
$\begin{aligned} & 100000 \\ & N 1 \\ & N 1 \end{aligned}$	Contact"b" $\mathrm{NO}=0 \quad$ When $100000=1$ $\mathrm{NO}=\mathrm{N} 1$ When $100000=0$	int real
	Contact" c " $\begin{aligned} & \mathrm{NO}=\mathrm{N} 1 \text { When } 100000=1 \\ & \mathrm{NO}=\mathrm{N} 2 \text { When } 100000=0 \end{aligned}$	int real
	Contact"c" $\begin{aligned} & \mathrm{NO}=\mathrm{N} 2 \text { When } 100000=1 \\ & \mathrm{NO}=\mathrm{N} 1 \text { When } 100000=0 \end{aligned}$	int real
	Conpare high $\mathrm{SO}=1$ When $\mathrm{N} 1 \geq \mathrm{N} 2$ $\mathrm{SO}=0$ When $\mathrm{N} 1 \leqq \mathrm{~N} 2$	int real
	Conpare low $\mathrm{SO}=0$ When $\mathrm{N} 1 \geqq \mathrm{~N} 2$ $\mathrm{SO}=1$ When $\mathrm{N} 1<\mathrm{N} 2$	int real
	Conpare equal $\mathrm{SO}=1$ When $\mathrm{N} 1=\mathrm{N} 2$ $\mathrm{SO}=0$ When $\mathrm{N} 1 \neq \mathrm{N} 2$	int real

	High-lebel priority	
	$\begin{aligned} & \mathrm{NO}=\mathrm{N} 1 \text { When } \mathrm{N} 1 \geqq \mathrm{~N} 2 \\ & \mathrm{NO}=\mathrm{N} 2 \text { When } \mathrm{N} 1<\mathrm{N} 2 \end{aligned}$	int real
	Low-lebel priority	
	$\mathrm{NO}=\mathrm{N} 2$ When $\mathrm{N} 1>\mathrm{N} 2$ $\mathrm{NO}=\mathrm{N} 1$ When $\mathrm{N} 1 \leqq \mathrm{~N} 2$	$\begin{aligned} & \text { int } \\ & \text { real } \end{aligned}$
	Logical and	
	$\mathrm{NO}=\mathrm{N} 1$ AND N 2	
	Logical or	
	$\mathrm{NO}=\mathrm{N} 1$ OR N 2	
$\frac{\mathrm{N} 1+2}{\mathrm{~N} 2}+\mathrm{NO}$	Logical exclusive or	
	$\mathrm{NO}=\mathrm{N} 1$ EXOR N2	
$\frac{\mathrm{N} 1}{\mathrm{~N} 2(9)}$	Addition	
	$\mathrm{NO}=\mathrm{N} 1+\mathrm{N} 2$	real
	Substraction	
	$\mathrm{NO}=\mathrm{N} 1-\mathrm{N} 2$	real
	Multiplication	
	$\mathrm{NO}=\mathrm{N} 1 \times \mathrm{N} 2$	real
	Division	
	$\mathrm{NO}=\mathrm{N} 1 / \mathrm{N} 2$	real
	Remainder	
	$\mathrm{NO}=\mathrm{MOD}(\mathrm{N} 1 / \mathrm{N} 2)$	
$\frac{\bar{z}^{N X X X}}{}$	Local constant:integer	int
	NO $=$ XXXX	
$\frac{\boldsymbol{\beta}^{N 0}}{Y Y Y Y}$	Local constant:real number	real
	$\mathrm{NO}=\mathrm{YYYY}$	

Data flow language (Function)

Symbol	Operation	Data type
$\mathrm{N} 1>\mathrm{NO}$	Conversion to Sign $\mathrm{NO}=-\mathrm{N} 1$	$\begin{aligned} & \text { int } \\ & \text { real } \end{aligned}$
$\mathrm{N} 1 \text { NO }$	Complement of 1 $\mathrm{NO}=\overline{\mathrm{N}} 1$	int
$\stackrel{N 1}{N}$	Conversion to absolute value $\mathrm{NO}=\|\mathrm{N} 1\|$	int real
$\stackrel{\mathrm{N} 1++}{+} \mathrm{NO}$	increment $\mathrm{NO}=\mathrm{N} 1+1$	$\begin{aligned} & \text { int } \\ & \text { real } \end{aligned}$
$\mathrm{N}_{-}^{\mathrm{N} 0}$	Decrement $\mathrm{NO}=\mathrm{N} 1-1$	int real
$\mathrm{N} 1_{1 / 2}{ }^{\mathrm{No}}$	One half $\mathrm{NO}=\mathrm{N} 1 \times 1 / 2$	int
$\mathrm{N} 1 \times 2 \mathrm{NO}$	Double $\mathrm{NO}=\mathrm{N} 1 \times 2$	int
$\mathrm{N}_{1}+\mathrm{NO}$	Square $\mathrm{NO}=\mathrm{N} 1^{2}$	int real
$\xrightarrow{\mathrm{N} 1+\mathrm{NO}}$	Exponential $\mathrm{NO}=\mathrm{N}^{\mathrm{N} 1}$	real
$\frac{\mathrm{N} 1}{\mathrm{v}^{\mathrm{N} 0}}$	Square root $\mathrm{NO}=\sqrt{ } \mathrm{N} 1$	int real
$\xrightarrow[\mathrm{EC}]{\mathrm{N} 0}$	Bit count Number of bits that \rightarrow set 1 in N1	int
$\mathrm{N} 1 \mathrm{NO}$	Gray code binary N1 converted to gray code	int
$\stackrel{\mathrm{N} 1}{\sim}$	Dead zone $\begin{aligned} & \mathrm{NO}=\mathrm{N} 1-k i 0000 \text { when } \mathrm{N} 1>\text { ki0000 } \\ & \mathrm{NO}=\mathrm{N} 1+\text { ki0000 when } \mathrm{N} 1<-k i 0000 \end{aligned}$	int real
$\mathrm{N} 1 \sim \mathrm{NO}$	Pattern $\mathrm{NO}=\mathrm{piOOOO}(\mathrm{~N} 1)$	int real
$\stackrel{N 1}{m_{r}} \mathrm{NO}$	Differential compensation N1	real
$\mathrm{N}_{\underline{\theta}}^{\mathrm{N} 0}$	Phase compensation N1	real
$\stackrel{\mathrm{N} 1}{\square \mathrm{I}^{\mathrm{N} 0}}$	PI compensation N1	real
$\mathrm{N}_{\square}{ }^{\mathrm{NO}}$		real
$\mathrm{N}^{\mathrm{N} 1}$		real

$\stackrel{\mathrm{N} 1 \bar{x}^{\mathrm{N} 0}}{ }$	Arithmetic mean $\mathrm{NO}=\mathrm{SUM}(\mathrm{mrOOOO}) / \mathrm{N} 1$	real
$\stackrel{N 1}{N 0}$		real
$\stackrel{N 1}{N 0}$	PID compensation	real
$\mathrm{N}^{\mathrm{N} 0}$		real
$\stackrel{\mathrm{N} 1}{\mathrm{NO}}$		real
$\mathrm{N} 1 \mathrm{no}$	Fixed cycle pulse	real
$\mathrm{N} 1 \mathrm{~N} 0$	Variable setting pattern $\mathrm{NO}=\mathrm{mrOOOO}(\mathrm{~N} 1)$	real
$\mathrm{N} 1 \mathrm{~N} 0$	Upper/lower limiter NO=upper limit when N1> upper limit NO=lower limit when N1 < lower limit	real
$\stackrel{N 1}{\mathbb{N} 0}$		real
$\mathrm{N}^{\mathrm{Eb}}{ }^{\mathrm{N} 0}$	Subroutine Subroutine running N1 argument NO return value	$\begin{gathered} \text { int } \\ \text { real } \\ \text { bit } \end{gathered}$
$\text { SI } 8 \mathrm{~B}$	Condidional subroutine Subroutine running when $\mathrm{SI}=1$	bit
$\frac{\mathrm{N} 1}{f}$	System function $\mathrm{NO}=\mathrm{f}(\mathrm{~N} 1)$ f() SIN: $\operatorname{SIN}(\mathrm{N} 1)$ COS: COS(N1) TAN:TAN(N1) ASIN:SIN (N1) TSTD: ON timer TRTC: OFF timer USUC: ON defferrentiation DSDC: OFF defferrentiation BKLC: Back lash BKLS: Back lash compensation	$\begin{gathered} \text { int } \\ \text { real } \\ \text { bit } \end{gathered}$
$\frac{s 1}{F}$	System function When $\mathrm{SI}=1$ execution F() SET: RESET: MOVW:Data transfer UPDOWN: Counter,etc.	bit

4-4 Download/Upload

When Edit is completed, download the project to DG-AMP.
Project is stored in the flash memory.

When you want to monitor/debug the program, perform "PLC connection (Upload)" to read the details of project from DG-AMP then perform said operation. (Immediately after downloading, TDsxEditor becomes the condition that monitor and debug are allowed".)

In the case of DG-AMP, connection target is valid only for "Online CPU".

4-5 Monitor/Debug

As is the case with editing, select the program that you want to monitor/debug to make the circuit appear.

4-6 How to check the firmware version

For checking the firmware version of DG-AMP,
select "Online", "PLC RAS information indication", then

Select "Model information".

Version information of DG-AMP displays in the right-side window.

5-1 Console

Console section at the front of DG-AMP body is as followed:

Liquid crystal display section
Upper section
Lower section

LED section

Switch section

1) Liquid crystal indicator

Upper section displays the normal time. In addition, when error occurs, this section displays the details of error.
Lower section displays the data in the internal register. In addition, setting of writing data is available.

| $*$ | 11 | $/ 03$ | 15 | $:$ | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- |$: 00^{*}$,

Upper section Month / Day Hour: Minute: Second
Lower section Register address / Data display
2) LED section
(1) PWR LED (G)

Normally stays ON in green while the power stays ON.
(2) RUN LED (G)

Normally stays ON in green while the power stays ON.
(3) ALM LED (R)

Turn on red when error occurs.
(4) COM LED (Y)

While communication board (OPCN-1, etc) is connected, this LED turns on green after connection with high-level PLC has made and communication has been established.
(5) SD/RD LED (G)

While communication board (OPCN-1, etc.) is connected, this LED blinks in green when data is sent/ received.
3) Switch section
(1) UP/DOWN switch

Switch to make the data value (numeric value) at cursor position to be counted up/down by 1/-1.
(2) HEX/DEC switch

Switch to make the data indicated value to appear in hexadecimal/decimal.
(3) L/R switch

Switch to make the cursor position to shift to the left or right.
(4) ENT switch

Turning ON this switch confirms the data value or cursor zone. (Shift to the right is performed)
(5) MENU switch

Turning ON this switch cancels the confirmation of cursor zone. (Shift to the left is performed)

5-2 Indication of the data

Normally, cursor position is present at register group set position ((1)) at the lower section of LCD.
Actuation of UP/DOWN, L/R and ENT switches under this condition allows the data value of the respective registers to be indicated.

Data display (Lower section side)

(1) (Selecting the register at) register group set position

Change 2-digit portion of the register number by actuating UP/DOWN switch to select the register which you want to indicate.

$$
\mathrm{iO} \rightarrow \mathrm{oO} \rightarrow \mathrm{gO} \rightarrow \mathrm{zO} \rightarrow \mathrm{ri} \rightarrow \mathrm{iO} \rightarrow \text { Repeat }
$$

After you have selected the register that you want to indicate, push ENT switch to move the cursor to the register number set position.
(Note) ki register can display and write only the ki register at the top of subprogram in the project made with TDsx Editor.
(2) (Setting the register number at) register number set position

Select the digit position that you want to change by actuating L / R switch to change the register number by actuating UP/DOWN switch.
$1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow \mathrm{~A} \rightarrow \cdots \rightarrow \mathrm{~F} \quad$ Repeat (when HEX/DEC switch is put to HEX),
After you have set the register number that you want to indicate by repeating, push ENT switch to move the cursor to the data indication position. Then, data value of the register that you have set appears at data indication section.
(3) (Confirming the data indication at) data indication section

After above operation (2), cursor moves to the data indication position and present data value appears in the data indication section.
You can confirm I/O data, etc. at this position.
If needed, change of cardinal number is available from HEX/DEC switch.

5-3 Writing of the data

After you made the register number that you want to write through actuation in above 5-2 to appear, push ENT switch to move the cursor to the data writing position.
(4) (Setting the writing data at) data writing position

Push of ENT switch under the condition (3) to make data indicator to hold, cursor moves to the data writing position and then set the writing data by actuating L/R and UP/DOWN switches.
After you have set the writing data, push of ENT switch to make the data to be written.
(Note) About 2 seconds are needed for writing process of ki register. Conform the renewal of the time (sec.) of upper section after ENT switch is pressed, and then do the next actuation (ex: actuation of MENU key.)
When you want to hold the indication state even without performance of writing, you can confirm the data at this cursor position.
In such a case, after indication confirmation, return the cursor to the register group set position (1) by MENU switch.
(5) Writing of the data

After completing the actuation (4), data indicated is written (cursor position does not change).
After data writing operation (Turning ON ENT switch), push the MENU switch to move cursor to the data indication position and written data appears in the data indicator.

5-4 Setting of the time

You can set the time of day (Year, month, hour, and minute) without using PC.
Normally indication state is as following:
[Normal time indicator (Upper section side)]

(1) Holding down MENU pushbutton for 5 seconds or more to make the indicator to change as following:
[Indicator for time setting (Upper section side)]

(2) Change the indication from Year \rightarrow Month \rightarrow Day \rightarrow Hour \rightarrow Minute by actuating R switch, and UP/DOWN for each value.
(Push of L switch allows the indication to be changed as Minute \rightarrow Hour \rightarrow Day \rightarrow Month \rightarrow Year).
Actuating the ENT switch finally causes the indication to be changed.

5-5 Version indication of firmware

To confirm the version of the firmware of DG-AMP; press MENU button and actuate L or R switch at same time to indicate

Remarks 1: Running status

Register name	Relay name	Details	Unit
z00000	Z00000	Application program running (RUN LED)	
	Z00001	Major breakdown	
	Z00002	Minor breakdown	
z00001	Z00010	COM ERROR	
	Z00011		
	Z00012		
	Z00013		
	Z00014		
	Z00015		
	Z00016		
	Z00017		
	Z00018		
	Z00019	ALM lamp on	
	Z0001A	COM lamp on	
	Z0001B	SD/RD lamp on	
	Z0001C		
	Z0001D		
	Z0001E		
	Z0001F		
z00002	Z00020		
z00003	-	CPU execution time register	B.C.D (mSec)
z00004	-	CPU scan time register	B.C.D (mSec)
z00005	-	Calendar (Year/month)indication register	B.C.D (YYMM)
z00006	-	Calendar (Day/hour)indication register	B.C.D (DDHH)
z00007	-	Calendar (Min./sec.)indication register	B.C.D (MMSS)
z00008	-	Calendar (Day of the week) indication and	B.C.D (FFWW)
z00009	-	0.25 ms counter register (While application is running)	
z0000A	-	1s counter register	
z0000B	-	System program scan counter register	
z0000C	-	0.25 ms counter register	
z0000D	-	System reserved	
z0000E	Z000E0	DOWN toggle switch	
	Z000E1	UP toggle switch	
	Z000E2	L toggle switch	
	Z000E3	R toggle switch	
	Z000E4	HEX toggle switch	
	Z000E5	ENT push button switch	
	Z000E6	MENU push button switch (ON at each switch actuating)	
zr002C		Task 1 scan time (Unit: second Real number)	
zr002E		Task 2 scan time (Unit: second Real number)	

蛔 TOYODENKI SEIZOK.K.
HEAD OFFICE No. 1 Nurihiko BIdg. 9-2 Kyobashi 2-chome, Chuo-ku, Tokyo, Japan
ZIP CODE 104-0031
TEL. +81-3-3535-0652 or 0653

FAX. +81-3-3535-0660

OSAKA BRANCH

NAGOYA BRANCH

TAIPEI BRANCH 4F, 308, 6, Min Chaun E, Rd Taipei
TEL / FAX. +886-2-2632-3251

